Extreme low temperature tolerance in woody plants
نویسندگان
چکیده
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.
منابع مشابه
Aluminum exclusion and aluminum tolerance in woody plants
The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non...
متن کاملThe CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.
The meristematic tissues of temperate woody perennials must acclimate to freezing temperatures to survive the winter and resume growth the following year. To determine whether the C-repeat binding factor (CBF) family of transcription factors contributing to this process in annual herbaceous species also functions in woody perennials, we investigated the changes in phenotype and transcript profi...
متن کاملPhylogenetic analyses in cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins.
The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydri...
متن کاملHorticultural Applications of a Newly Revised USDA Plant Hardiness Zone Map
The accurate prediction of winter injury caused by low-temperature events is a key component of the effective cultivation of woody and herbaceous perennial plants. A common method employed to visualize geographic patterns in the severity of low-temperature events is to map a climatological variable that closely correlates with plant survival. The U.S. Department of Agriculture Plant Hardiness Z...
متن کاملGenus Salsola: Its Benefits, Uses, Environmental Perspectives and Future Aspects - a Review
Genus Salsola, a genus of annual semi-dwarf to dwarf shrubs and woody tree species, is widely distributed across the arid and semi-arid areas of the world. Several features like high fodder value, abundant seed production, tolerance to extreme climatic conditions like high temperature and prolonged drought conditions contributed significantly towards its success as a potential forage species in...
متن کامل